IAAP Web Accessibility Specialist (WAS)
Body of Knowledge (BOK)

2019 Co-Editors:
 ● Dr. Paul Bohman, CPWA & Rosemary Musachio, CPWA
Contributors:
 ● Dr. Paul Bohman, CPWA
 ● Pina D’Intino, CPACC
 ● Samantha Evans
 ● Katie Haritos-Shea, CPWA
 ● Eric Hind, CPACC
 ● David McDonald,
 ● Rosemary Musachio, CPWA
 ● Radek Pavlíček, CPWA
 ● Allison Ravenhall
 ● Paul Rayius
 ● Damian Sian, CPWA
 ● Stacy Iannaccone, CPACC

Edited: September 2019 to include WCAG 2.1
Table of Contents

IAAP Web Accessibility Specialist (WAS) ... 1

Body of Knowledge (BOK) ... 1

 The Purpose of this Document .. 1
 IAAP Exam Preparation Resources ... 1
 About the WAS Designation .. 2
 Additional Information .. 2
 The WAS Exam Content at a Glance .. 3

I. Creating Accessible Web Content ... 4

 A. Understand and interpret accessibility specifications and techniques 4
 B. Create accessible JavaScript, AJAX, and interactive content 7
 C. Integrate accessibility into the quality assurance process 8
 D. Choose accessibility techniques that are well-supported 8
 E. Create interactive controls/widgets (standard or custom) based on accessibility best practices ... 9
 F. Create accessible single-page applications ... 10
 G. Create web content that is compatible with the strategies used by persons with disabilities to access web content .. 10

II. Identify accessibility issues/problems .. 16

 A. Identify interoperability and compatibility issues ... 16
 B. Determine conformance to accessibility specifications based on accessibility issues found ... 16
 C. Test with assistive technologies .. 17
 D. Test for end-user impact ... 18
 E. Use accessibility testing tools effectively ... 19

III. RemEDIATE (fix) accessibility issues .. 21

 A. Prioritize accessibility issues based on the level of severity 21
 B. Recommend strategies and/or techniques for fixing accessibility issues 21
The Purpose of this Document

This Body of Knowledge document outlines the skills expected of candidates seeking to obtain the Web Accessibility Specialist (WAS) designation. The IAAP Web Accessibility Specialist (WAS) exam is a technical knowledge exam.

WAS knowledge includes comprehending theory, principles, and fundamental information appropriate to an intermediate level of skills and experience. For the purposes of the IAAP WAS designation, this is three to five years of hands-on work experience in or with a web accessibility team.

Specifically, the three main purposes of this document are as follows:
1. List the categories of information covered in the exam
2. Present general information about each category
3. List additional resources to help test takers prepare for the exam

The WAS exam allows individuals to certify their skillset in the specialized professional discipline of web accessibility. Individuals who pass the Certified Professional in Accessibility Core Competencies (CPACC) and the Web Accessibility Specialist (WAS) exams are eligible to carry a higher-level credential called the Certified Professional in Web Accessibility (CPWA).

The Body of Knowledge is designed to be a starting point when studying for the WAS exam. It is not intended to be an exhaustive explanation of every concept or question on the exam. Please note that the use of this guide does not guarantee successful completion of the exam.

As of the WAS BOK Update from September 2019, the WAS BOK will cover concepts from WCAG 1, WCAG 2.0, and WCAG 2.1. Unless specific information is discussed about a certain version, “WCAG” will be used.

If you discover any broken links, please contact certification@accessibilityassociation.org.

IAAP Exam Preparation Resources

Test-takers can study resources available anywhere in preparation for the exam. IAAP lists a collection of WAS Exam resources for preparation that are both free and for purchase. You can find these resources on the IAAP Prepare for the WAS Exam webpage.

Candidates should review each section of the WAS Content Outline to determine where they have the most background, where they have some knowledge, and identify sections that are less familiar where they will spend most of their time studying to prepare for the WAS Exam. Candidates may also utilize the WAS BOK for more detailed review and study preparation. All WAS Exam items are written from content contained in this WAS BOK.
About the WAS Designation

The IAAP Web Accessibility Specialist credential is intended for accessibility professionals who are expected to evaluate the accessibility of existing content or objects according to published technical standards and guidelines and provide detailed remediation recommendations. The WAS credential represents an ability to express technical proficiency for someone with at least an intermediate level of experience designing, developing, implementing, evaluating, and implementing accessible web-based content, projects and services. This exam is not intended for beginners or those without regular hands-on experience in remediating or identifying accessibility issues in code. The WAS Exam is not intended to illustrate or assess the ability to write code. Knowledge of HTML programming alone will not provide the background necessary to successfully achieve the WAS credential. Hands-on experience and knowledge of programmatic code elements, WCAG 2.1 standards, and contextual implications for end users of assistive technology are all required.

Web Accessibility Specialists are expected to know and use the relevant technologies, not merely be aware of them. Relevant domains for the WAS designation include:

- creating accessible web content
- identifying accessibility issues/problems
- remediating (fixing) accessibility issues

Web accessibility refers to the inclusive practice of making the Web usable by people of all abilities and disabilities.

Additional Information

- [IAAP main web site](#)
- General information about [IAAP certification](#)
- [WAS Exam Content Outline](#)
- [WAS Frequently-Asked Questions](#)
- [WAS Preparation Resources](#)
- IAAP webpage: [Process of creating a professional certification](#)
The WAS Exam Content at a Glance

I. Creating Accessible Web Solutions (40% of the exam)
 A. Guidelines, principles and techniques for meeting success criteria (including WCAG, WAI-ARIA, ATAG, basic concepts, limitations of the specific guidelines, principles, and techniques, what is normative vs. non-normative; what is included in different levels (A, AA, AAA))
 B. Basic knowledge of programming (at a conceptual level; principles and concepts related to programming; impact of specific coding practices on web solutions vs. writing specific code)
 C. Accessibility quality assurance (i.e., assuring the quality of accessibility throughout the development life cycle, difference and overlap between user experience and accessibility)
 D. Accessibility supported technologies (including user’s assistive technologies and accessibility features; combination of assistive technologies and users agent; design decisions in choosing technologies that support accessibility; e.g., not choosing Flash when something else has better accessibility support, differences in assistive technology supports and behaviors, differences in support for touch when screen reader is on vs. off)
 E. Standard controls vs. custom controls (e.g., using standard controls when possible; if using custom controls build them using WAI-ARIA best practices)
 F. Single page applications (e.g., focus control, delays for AJAX-Screen Reader compatibility, live announcements)
 G. Strategies of persons with disabilities in using web solutions (e.g., navigation of screen reader users, headings and landmarks, coping strategies, user preferred methods vs. website specific methods, using keyboard vs. mouse)

II. Identify accessibility issues in web solutions (40% of the exam)
 A. Interoperability and compatibility issues
 B. Identifying guidelines and principles regarding issues (including WCAG, WAI-ARIA, ATAG, basic concepts, limitations of the specific guidelines, principles, and techniques, what is normative vs. non-normative; what is included in different levels (A, AA, AAA))
 C. Testing with assistive technologies (e.g., navigation of screen reader users, headings and landmarks, screen magnifiers, high contrast, using keyboard vs. mouse)
 D. Testing for end-user impact (e.g., low vision, cognitive, mobile/touch)
 E. Testing tools for the web (both automated and manual tools, i.e., what they are and what are their limitations; e.g., unit testing, browser-based tools, spider tools, bookmarklet, automated tools used to monitor site vs. external tools)

III. Remediating issues in web solutions (20% of the exam)
 A. Level of severity and prioritization of issues (e.g., cost benefit; legal risk, user impact, what is the problem, what to focus on first)
 B. Recommending strategies and/or techniques for fixing issues (i.e., best solution, solution that most widely useful, feasibility of solution, fixing vs. redesign, how to fix it)
I. Creating Accessible Web Content

A. Understand and interpret accessibility specifications and techniques.

Overview
This competency focuses on designing and creating web content in accordance with the following W3C accessibility specifications:

- **Web Content Accessibility Guidelines (WCAG) 2.1**
 - WCAG 2.1 (normative)
 - Understanding WCAG 2.1 (non-normative)
 - Techniques for WCAG 2.1 (non-normative)
 - How to Meet WCAG 2.1 (non-normative)

- **Accessible Rich Internet Applications (WAI-ARIA) 1.1**
 - WAI-ARIA 1.1 (normative)
 - WAI-ARIA 1.1 The Roles Model (non-normative)
 - WAI-ARIA Authoring Practices 1.1 (non-normative)
 - Accessible name and description computation 1.1 (non-normative)

- **Authoring Tool Accessibility Guidelines (ATAG) 2.0**
 - ATAG 2.0 (normative)
 - Implementing ATAG 2.0 (non-normative)

The W3C
The W3C is an internationally-recognized web standards body that identifies its approved technical specification standards as “W3C Recommendations” (such as HTML, CSS, etc.). The consortium has several Accessibility specifications that have achieved W3C Recommendation status, including WCAG, ATAG, and WAI-ARIA. Other accessibility-related W3C recommendations – such as the User Agent Accessibility Guidelines (UAAG) are out of the scope of the IAAP WAS certification.

Web Content Accessibility Guidelines (WCAG) 2.1
The international standard, WCAG 2.1, provides recommendations for web authors to improve the accessibility of content on the Web. Following the requirements will make content accessible to a wide range of people with disabilities, including blindness, low vision, colorblindness, deafness, hearing loss, learning disabilities, cognitive disabilities, limited movement (motor disabilities), speech disabilities, photosensitive seizures, and combinations of these. Following these guidelines will also often make your web content more usable to people in general.

Web Content Accessibility Guidelines (WCAG) is developed through the W3C process in cooperation with individuals and organizations around the world, with a goal of proving a single shared standard for web content accessibility that meets the needs of individuals, organizations, and governments internationally. The WCAG documents explain how to make web content more accessible to people with disabilities.
Introduction to WCAG: https://www.w3.org/WAI/standards-guidelines/wcag/

The WCAG document is organized into principles, guidelines, and success criteria. The four principles are:

- Perceivable
- Operable
- Understandable
- Robust

WCAG 2.1 has 13 guidelines within these principles while WCAG 2.0 has 12. Input Modalities is the new guideline included in WCAG 2.1. Each guideline has at least one or more success criteria. Each success criterion is assigned a level: A, AA, or AAA. A site that meets all the success criteria at level A is said to “conform to” level A. A site that meets all the success criteria of both level A and level AA conforms to level AA. A site that meets all the success criteria at all levels conforms to level AAA.

Most laws and policies that reference either WCAG 2.0 or WCAG 2.1 focus on conformance to level AA conformance (which includes success criteria at both the A and AA level).

The W3C has published techniques for meeting WCAG 2.1. The techniques can be one of three kinds:

- **Sufficient techniques**: If the web content meets all of the sufficient techniques, it successfully meets the success criterion.
- **Failure techniques**: If the web content fails any of these, it does not meet the success criterion.
- **Advisory techniques**: Optional or conditional techniques that may represent accessibility best practice or possible ways of meeting the success criterion.

The techniques published by the W3C are not normative, but they have been vetted by a group of accessibility professionals. The techniques may change over time, due to evolving technologies, improvements in accessibility support, improved ideas, the emergence of new accessibility-related specifications, and so on.

WCAG Versioning

Candidates should understand the history of WCAG releases from WCAG 2.0 in 2008 and WCAG 2.1 in 2018 and demonstrate understanding the changes introduced in WCAG 2.1.

WCAG 2.1 has seventeen success criteria added to the WCAG 2.0’s sixty-three, which aren’t altered in any way. The latest WCAG update includes how content for new technologies, such as mobile phones or tablets, should be developed or remediated so persons with disabilities can use them. WCAG 2.1 also includes more criteria that focus on individuals with low vision or with cognitive disabilities, which aren’t met in WCAG 2.0.
Accessible Rich Internet Applications (WAI-ARIA) 1.1

The Web Accessibility Initiative (WAI) of the W3C created WAI-ARIA to increase the accessibility of content – dynamic content in particular – for assistive technology users, such as screen reader users. WAI-ARIA defines attributes that can be added to standard HTML to define the name, role, and values (properties and states) of elements, especially for custom widgets. One of the goals of WAI-ARIA is to make web applications act more like native applications. WAI-ARIA widgets interact with the accessibility API of the operating system, providing assistive technologies with the semantics and live updates necessary for full accessibility. The WAI-ARIA Authoring Practices define the best practices for widget structure, keyboard behaviors, and so on.

Introduction to WAI-ARIA: https://www.w3.org/WAI/standards-guidelines/aria/

Authoring Tool Accessibility Guidelines (ATAG) 2.0

The ATAG specification requires authoring tools (HTML/web editors, content management systems, social media sites, blog commenting features, discussion forums, user rating features, etc.) to 1) have an accessible user interface and 2) support the production of accessible content.

Introduction to WAI ATAG: https://www.w3.org/WAI/standards-guidelines/atag/

Normative versus non-normative documents:

“Normative” documents define accessibility practices required for conformance (to a specification).

“Non-normative” documents provide guidance and techniques for interpreting and conforming with the normative requirements, but non-normative techniques are not required for conformance. Non-normative documents may change more frequently than normative documents, to adapt to changing technologies and current best practices.

Study topics related to specifications and techniques:

Topics that should be studied and mastered to enable you to pass the WCAG 2.1 components of the Web Accessibility Specialist exam.

- Understand and interpret WCAG 2.1
 - Understand the relationship between principles, guidelines, success criteria, and their related success/failure techniques.
 - Understand the intent, requirement, and impact of each principle, guideline, and success criterion.
 - Be familiar with sufficient, failure, and advisory techniques for each success criterion.
 - Understand the conformance level designations (A, AA, AAA).
 - Identify the conformance level of each WCAG 2.1 success criterion.
 - Understand the three types of techniques and the W3C vetting process for techniques.

- Understand and interpret WAI-ARIA 1.1
 - Understand the purpose and impact of WAI-ARIA 1.1.
 - Understand the WAI-ARIA 1.1 model of names, roles, and values.
 - Know when and why to use WAI-ARIA 1.1, and when to use standard HTML instead.
 - Be familiar with the authoring practices for custom widgets, including semantic structure, keyboard behavior, etc.

- Understand and interpret ATAG 2
 - Understand how ATAG 2 applies to web sites.
• Understand the meaning and intent of the two main sections of ATAG 2.
• Understand the intent, requirement, and impact of each principle, guideline, and success criterion.
• Distinguish between good automated practices in authoring tools and good practices that require author/user input
• Understand the power and limitations of automated accessibility authoring features
 • Understand the difference between normative and non-normative documents, information, and be able to identify which documents are normative.

B. Create accessible JavaScript, AJAX, and interactive content

The WAS exam does not cover the details of JavaScript programming syntax (a person can pass the exam without being a professional JavaScript programmer), but web designers and developers must be aware of how JavaScript, AJAX, and interactive content impact accessibility, and must be able to identify the concepts, principles, and strategies of accessible JavaScript interaction design.

Support for JavaScript in accessibility APIs and assistive technologies

Modern screen readers and other assistive technologies are able to process the results of JavaScript processes, as long as the JavaScript is coded with accessibility in mind. There are no inherent barriers in the technologies themselves to making JavaScript accessible.

Study topics related to JavaScript, AJAX, and Interactive Content

Some of the highlights of accessible interaction design are shown in the list below (this list is NOT all-inclusive).

• **Manage focus** - When JavaScript changes the visual focus (e.g. when a dialog is activated), JavaScript should be used to manage the keyboard focus so that it follows the visual focus.
• **Use semantic html** - HTML defines sets of elements, attributes, and attribute values. These features have specific semantic meanings and are intended to be processed by user agents in particular ways.
• **Keep content and its changes perceivable** - When content is added or altered on a page, it should generally be added after the current point of focus, because screen reader users are much less likely to navigate backward in the DOM than forward in the DOM, causing them to miss most additions/changes in previous positions in the DOM.
• **Create device-independent event handlers** - JavaScript event handlers must be device-independent. The functionality must be available with the keyboard, mouse, touch, voice, etc.
• **Consider DOM order when adding new content dynamically**: When content is added or altered on a page, it should generally be added after the current point of focus, because screen reader users are much less likely to navigate backward in the DOM than forward in the DOM, causing them to miss most additions/changes in previous positions in the DOM.
• **Simplify events** - Buttons and other active elements should generally have only one type of event associated with them. Multi-event elements are more difficult to make accessible, and more difficult for users to understand. For example, a menu item should either act as a link or as a button that expands a submenu. Coding a menu item to expand the menu on hover and activate a link on click is problematic for keyboard users, touch users, and gesture-based mobile screen reader users.
C. Integrate accessibility into the quality assurance process.

Accessibility needs to be integrated into the entire product life cycle. Details will vary from one web development team to another, but the product life cycle can include concept, requirements, design, prototyping, development, quality assurance, user testing, support, and regression testing. Each person’s role in the product life cycle should include some aspect of accessibility.

Study topics related to accessibility quality assurance

- Characterize and differentiate between the disciplines of Agile and Waterfall project management methodologies and compare the approaches each methodology would have in relation to accessibility quality assurance.
- Demonstrate an understanding of the benefits of designing digital content with accessibility in mind as opposed to remediation.
- Characterize and differentiate between the disciplines of accessibility and user experience design and compare assumptions of each discipline.
- Demonstrate an understanding of user testing and compare to accessibility verification testing (AVT).
- Understand how accessibility needs to be integrated into the entire product life cycle, including concept, requirements, design, prototyping, development, quality assurance (QA), user acceptance testing (UAT), support, and regression testing.
- Identify ways in which each person’s role in the product life cycle can include some aspect of accessibility.

D. Choose accessibility techniques that are well-supported

Most modern screen readers have comparable support for the most important accessibility techniques and features, but screen reader behaviors and support for newer features – including some types of custom ARIA widgets – can sometimes be incomplete, inconsistent, or faulty.

It is important to design to accessibility standards, rather than cater to specific screen reader differences or bugs. In some cases, it can be appropriate to implement workarounds, compromises, or polyfills, but recognize that screen reader behaviors can change at any time, whereas guidelines and recommendations are more stable over time, and usually represent the best approach.

Topics that should be studied and mastered to enable you to pass the WCAG 2.1 Accessibility Support and Programatically Determinable components of the Web Accessibility Specialist exam:

Study topics related to accessibility support

- Understand the importance of coding to standards, rather than to the quirks or features of only one set of technologies.
- Understand the concept of progressive enhancement, in which the baseline interaction is possible using technologies, and the more modern web site features are available for more modern technologies.
- Understand the importance of testing web designs for accessibility across a variety of platforms, browsers, and assistive technologies, and not just assuming they’ll work, even if they technically conform to published accessibility specifications.
- Know which combinations of assistive technologies work best with which browsers, for testing purposes.
• Know how to determine when an inaccessible outcome is the result of poor design versus poor technology support.
• Know how to tell the difference between inaccessible content and incomplete or faulty accessibility testing techniques.
• Avoid design techniques or technologies that work only on certain platforms.
• Know when it may be appropriate to write code that overrides, supplements, or fixes bugs in browsers or assistive technologies (do this only with great caution!).

E. Create interactive controls/widgets (standard or custom) based on accessibility best practices

Web designers often like to push the limits of conventional web design by creating interactive controls or widgets, often using custom designs that exceed the capabilities of standard HTML. In broad strokes, these interactive components do not have to become accessibility barriers. They can be made accessible when designed with accessibility in mind. Accessibility techniques for custom controls and widgets usually require ARIA attributes and patterns, which can sometimes be complicated to achieve successfully.

Study topics related to interactive controls/widgets

Some highlights of key concepts to take into account with interactive controls/widgets include the following (this list is NOT all-inclusive):

• Become familiar with the keyboard interaction model with ARIA custom widgets. There are general keyboard patterns, plus keyboard patterns specific to types of widgets.
 o In many widgets, the keyboard interaction model is to tab to the widget as a whole, or to the active/selected element within the widget, then use the arrow keys to navigate within the widget. The tab key is generally not used for navigation within the widget. Other keystrokes may be recommended for certain widgets.
• Native HTML widgets should be used instead of custom WAI-ARIA widgets whenever possible, because of the built-in accessibility features of native HTML widgets. Implementing custom widgets requires greater attention to detail in the coding techniques and patterns, and support for custom widgets may vary, especially for less common widgets.
• When creating ARIA widgets, pay attention to the semantic structure of the roles. Some roles have required parent or child roles, and some roles have required attributes.
• When a custom role is assigned to an element, the custom role completely overrides the native role. For example, `<li role="button">` will be treated like a button by the accessibility API, not like a list item.
• The application role should be used sparingly, if at all, because it overrides many assistive technology keystrokes, such as the keystrokes that allow screen reader users to navigate by semantic elements such as headings, landmarks, tables, etc.
F. Create accessible single-page applications.

Single-page designs (designs that bring in new content – often through AJAX processes – without reloading the page) present a unique set of accessibility challenges.

Screen readers typically react to a normal page load event by reading the page title, and (in the case of some screen readers) reading a summary of available semantic elements (e.g. “page has 7 headings, 3 landmarks, and 27 links”). Single-page applications are not normal page load events. Single page applications use AJAX to pull in content to the current page/URL, rather than load a new page/URL, usually with the intent to improve performance and streamline the web application user experience. Screen readers typically do not announce anything when content is loaded via AJAX, so users may be completely unaware that new content has been loaded.

Study topics related to single-page applications

- If the AJAX content is loaded as the direct result of a user action (e.g. activating a button), the screen reader user should be notified that new content has loaded. Methods that can be used to notify screen readers that new content has loaded include:
 o Sending the focus to the new content
 o Using aria-live to make an announcement without moving the focus.
- If the AJAX content is loaded passively (i.e. not as the direct result of a user action like activating a button), users may not need to be notified that the new content has loaded, depending on the importance and urgency of the content and whether the content has been inserted above the user’s current position or not.

G. Create web content that is compatible with the strategies used by persons with disabilities to access web content.

People with disabilities often use different methods to access web content, compared to the general population. They may use only the keyboard, voice input, or alternative input devices. Many people with disabilities use assistive technologies. There are many kinds of assistive technologies, designed for many different kinds of disabilities. Most people who are blind, for example, use screen reader software to listen to web content, and to allow them to navigate through web content according to the semantic markup (e.g. landmarks, headings, tables, etc.). Creating accessible content requires knowing about different strategies and how different concepts, designs and implementations affects those strategies.

The following is a summary of some of the highlights of the strategies and technologies used by people with various kinds of disabilities (this list is not all-inclusive).

Vision

Depending on if a user has some vision or no vision the strategies are quite different. Users with limited vision often use the vision they do have to help them navigate and find their way around an interface, while blind users need other strategies to navigate. It is also a difference between using interfaces via a touch screen or not.

Blind users

Blind users need a screen reader to translate what is shown visually on the screen to speech or (less commonly) to braille. Since the user can’t see the interface the screen reader needs to provide the user with mechanisms to understand the structure of the interface and to navigate.
A common approach in screen readers to help users is to create lists of headings, links, form controls and so on. In this way, users quickly can move between such elements on the page. For this to work, it is important to use the correct markup. The support for standard HTML elements is often quite good and most screen readers also support significant parts of WAI-ARIA, but you need to know how the support is for the markup you are planning to use in common screen readers and browsers.

Among screen reader users, knowledge and strategies vary considerably. Some users only use a few keystrokes, such as the arrow keys to navigate from item to item down the page, and the tab key to go to focusable items. Others frequently use a wide range of advanced screen reader keystrokes.

You should be familiar with the most common screen readers, how they work and what parts of HTML5 and WAI-ARIA they support. Some examples of common screen readers:

- **JAWS for Windows by Freedom Scientific**
 https://www.freedomscientific.com/Products/software/JAWS/
- **NVDA by NV Access**
 https://www.nvaccess.org/
- **Narrator for Windows by Microsoft**
- **VoiceOver for MacOS by Apple**

Screen reader and browser combinations

Not all combinations of screen readers, browsers, and operating systems work equally well in terms of accessibility support.

Recommended combinations of screen readers and browsers:

- **Windows:**
 - JAWS and Google Chrome (and in some cases IE11)
 - NVDA and Firefox
 - Narrator and Edge
- **MacOS**
 - VoiceOver and Safari
- **iOS**
 - VoiceOver and Safari
- **Android**
 - TalkBack and Chrome

Screen reader considerations

- The difference between visual order of content and the structural order of content presented to the screen reader
- How the role attribute in WAI-ARIA and semantic elements in HTML work to create a page structure
- The difference between braille output and speech output
- How to work with lists of different objects (e.g. tables, lists, images, etc.) to find important information on the screen
- How to navigate with a keyboard using a screen reader
How to enter information in a form

Blind users with a touch screen

The interaction model for sighted touchscreen users is quite different from the interaction model for blind touchscreen users. Sighted users swipe through and activate items based on their position on the screen by swiping or touching the items directly. Blind users, on the other hand, have a whole different set of gestures available to them when a screen reader is activated on a touch device. The screen reader overrides the visual method for interacting and replaces it with a gesture-based system. There are screen reader gestures for going forward through content (swipe right), going backward (swipe left), activating the current button or link (double tap the screen anywhere), and so on. The specific gestures vary from one brand of screen reader to the next.

You need to have a basic understanding of how to work with:

- VoiceOver on iOS by Apple
- Android TalkBack
 https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=3529932

Users with low vision may also use a screen reader to get text read out loud, but they often use the vision they have in order to find their way around the interface. There are several different strategies for users with low vision:

- Using text enlargement and zoom in the browser
- Changing colors in the browser or operating system
- Using magnifying tools

You need to have a basic understanding of common magnifying tools like:

- ZoomText by Ai Squared
- SuperNova by Dolphin
 https://yourdolphin.com/supernova-magnifier

You also need to understand how to support text enlargement in smartphones and how the zoom functions work:

- Accessibility in iOS for developers
- Vision Accessibility features in iPhone
- Magnification in Android
 https://support.google.com/accessibility/android/answer/6006949?hl=en

Some concepts that are important to understand:

- It is quite common to use a mouse to navigate but to also use keyboard commands to speed up the interaction
- Users need clear borders to be able to see where different areas start and end
- Users might alter colors, contrasts, and font
Users often combine zooming and screen reading
There is a big gap between users that only need the built-in zoom in the browser and users that zoom the interface 32 times and use screen readers as a complimentary technique, and their strategies vary accordingly.
Screen reader users may also use voice input tools to navigate as many have or develop physical weaknesses associated with repetitive physical functions such as carpal tunnel and other limitations.

Reading

Users that have reading difficulties may use assistive technology such as Kurzweil or Read & Write, or may not have any assistive technology. Some may instead search for information that is not text. Instead of searching on Google a user might use YouTube. If there is an alternative to text, an alternate format may be preferable.

When reading text, it is possible to do changes to the presentation in the browser. You should know how this affects the interface and what challenges might arise from doing such changes. Some of the changes that can be done are:

- Text size
- Text color and background color
- Font

Users might even define their own style sheet to be used.

There are some assistive technologies available to this group of users. They are based on either screen reading or altering the presentation.

Screen readers for users with reading difficulties read the text that the user selects. The screen reader does not offer any navigation help since most individuals in this user group do not need that level of support. Examples of readers for people with reading difficulties include:

- read&write by Texthelp
- BrowseAloud by Texthelp
- NaturalReader
 https://www.naturalreaders.com
- Kurzweil

For assistive technology that alters the presentation it is of key importance that text is offered as real text and not images of text otherwise it becomes difficult or impossible for the assistive technology to do any alteration of the text.

Some concepts that are important to understand:

- Differences between screen readers for this group and screen readers for blind users
- The importance of using real text instead of images of text
Cognition

This user group is also very diverse. There are among others, users that have concentration problems, users with neuropsychological disabilities and users with intellectual disabilities. Some users with intellectual disabilities can’t use the interface even with assistive technology, but most users are able to use the interface even if it might require some alterations or assistive technology.

When using assistive technology, it is mainly the same assistive technology as users with reading difficulties, but they might also use ad blockers, screen masking and other such tools to help focusing on the task at hand.

There are also assistive technologies to help users write that some in this user group may need to be able to input information in your solution.

Some concepts that are important to understand:

- The importance of a clean, simple layout and presentation to aid this group.
- Plain simple language is key for this group.
- Images and multimedia should be used to supplement text wherever possible.
- That users with cognitive disabilities often use assistive technology to read and write.

Motor

Users that have motoric disabilities is a broad group of users. Some of them are completely or partly paralyzed, others have trouble with fine motoric, perhaps due to tremor or rheumatism.

Another example is users that need to control the interface with a keyboard. These users often use the tab key to jump between interactive objects in the interface, like buttons, form fields and links.

Some users use a point and click based solution, this might be:

- Ordinary mouse
- Tremor filtering mousepad
- SteadyMouse
 https://www.steadymouse.com/
- Eye-tracking
- LC Technologies Inc.
- Tobii
- Point scanning with a switch control
- iOS

Some users use the keyboard, much like blind users, but with some important differences:

- Users must be able to see where the focus is; what link, form control or button has focus when the user navigates down the page with a keyboard since they do not use a screen reader that can tell them this.
- Since they don’t use a screen reader, they can’t use lists of headings, links and other items to quickly move down a page.
Some users use speech control. You should have a basic knowledge of how this works. One example of such a tool is:

- Voice recognition

Some concepts that are important to understand:

- Users have different input devices so our web solution must be possible to use with different input methods like:
 - Mouse
 - Keyboard
 - Voice
 - Touch/gesture
- To have large, clearly visible and easy to spot clickable areas is of key importance for many users
- It is important to help users see what object is currently in focus
- Prediction is very helpful as it limits the number of keystrokes required when typing

Hearing

Users that are deaf from birth may have sign language as their first language. This means that text information on websites they visit often are their second or third language.

There are some attempts to create assistive technology that translates written text to sign language, and although this is not yet commonly used it is preferable to use an easy to read language both to help this type of assistive technology and readers without assistive technology. Icons, illustrations and images should also be used to enhance the information.

Accurate captioning is very important for video content. The use of only automated tools and those relying only on artificial intelligence creates many opportunities for incorrect translation of spoken content.
II. Identify accessibility issues/problems

A. Identify interoperability and compatibility issues.

When evaluating web content for accessibility flaws, it’s important to identify any aspects of the design that can cause problems for the methods, technologies, or strategies used by people with disabilities.

Study topics related to strategies used by people with disabilities

Some highlights of the types of things to look for include:

Keyboard accessibility
- Actionable elements (links, buttons, controls, etc.) are focusable with the keyboard
- All focusable elements must have a visible focus indicator
- Logical tab order
- No keyboard trap

Touch device accessibility
- Sufficiently large touch target size
- Allowing different screen orientations
- Extra considerations for when the screen reader is turned on
- Custom gesture events must have an alternative method for activation (e.g. by activating a button)
- Motion-activated events (e.g. shaking the device) must have an alternative method for activation (e.g. clicking a button)

B. Determine conformance to accessibility specifications based on accessibility issues found.

It is important to first understand the standard being applied (e.g. WCAG 2.0 or WCAG 2.1 level AA), and to distinguish between true accessibility failures with respect to that standard versus poor design decisions that don’t fail the standard (even if they fail a different standard or a different level within the standard).

Identify the success criterion for every accessibility failure.

Often the main goal of an accessibility evaluation is to determine if the design conforms with a particular specification or not. The target in many settings is WCAG 2.0 or WCAG 2.1 level AA. If this is the task, it is important to be able to map each accessibility issue to one of the success criteria within that specification. An image missing alternative text, for example, would map to success criterion 1.1.1.

Differentiate between WCAG 2.0 and WCAG 2.1

As mentioned earlier, WCAG 2.1 has twelve additional success criteria at Level A and Level AA related to cognitive disabilities, mobile devices, and screen orientations. For instance, if a link requires a hard finger press to be activated, then the issue would be linked to success criterion 2.5.2. While executives need to know WCAG 2.0 as policy standards, developers need to implement WCAG 2.1 success criteria techniques.
Distinguish between failures (of success criteria) from optional best practices.

If the goal is conformance, don’t include every possible accessibility best practice in an accessibility audit. Doing so will make it harder to meet the conformance goal quickly. Any issues not directly related to the target conformance level should be documented separately or flagged somehow as not being required for conformance (even if they are good ideas in terms of their accessibility impact).

Study topics related to determining the level of conformance to accessibility specifications

- Become familiar with the specifications (WCAG, WAI-ARIA, and ATAG), and know which success criteria apply to which conformance level.
- Be able to distinguish between failures of accessibility criteria versus other bad accessibility practices that are not referenced in the specifications.

C. Test with assistive technologies.

Testing with assistive technologies (AT) allows the tester to check for issues from the perspective of individuals with disabilities who use AT to access webpages, web applications, and software applications. Types of AT include screen readers, screen magnifiers, voice recognition, and even keyboards. It is important to note that a tester simulating use of AT is very different from someone who uses AT all the time.

Testing with a screen reader or voice recognition, for example, allows you to check if a page is navigable by its headings, lists, or landmarks. You can see if you can access form fields or navigate data tables. You can test if user interface controls can be reached and activated by using AT shortcuts. When you test with a screen magnifier such as ZoomText, you can see if content can be viewed in different contrast settings. Screen magnifiers also should be tested to see if shortcuts are functional when navigating webpages.

Although you may not consider a keyboard as assistive technology, it is essential for screen reader users and persons who can’t manipulate a mouse. When testing a webpage using a keyboard, navigate it with the Tab key. Accessing such controls as radio buttons and trees require using arrow keys.

Assistive technologies must be tested with compatible browsers. As of June 2019, JAWS works best with IE 11 or Chrome, NVDA works best with Firefox, and VoiceOver works best with Safari. Even if AT works with a combination of browsers, issues may appear in a browser only. For instance, JAWS doesn’t read headings in certain versions of Internet Explorer when the webpage actually has heading structure.

Study topics related to testing with assistive technologies

- Know how to use screen readers to navigate elements such as landmarks, headings, tables, forms, etc.
- Know how to go forward and backward through focusable content in screen readers (e.g. using the tab key or shift+tab in desktop browsers)
- Know how to go forward and backward through all content in screen readers (e.g. using the down or up arrow keys in most screen readers).
- Know the consequences of using contrast enhancement modes such as Windows High Contrast Mode
• Know how to use the keyboard to navigate forms.
• Know how to invoke keyboard combinations to navigate various types of elements.
• Know how to use the keyboard to navigate ARIA custom widgets.
• Know your own limitations in your assistive technology knowledge. If you’re not experienced, don’t assume something is an error if it may be that you don’t know how to use the assistive technology correctly.
• Know why it is important to get the opinions and feedback of users with disabilities using their own assistive technologies.
• Know which combinations of assistive technologies work best with which browsers. Don’t test on combinations that aren’t recommended or that don’t fully support accessibility.

D. Test for end-user impact

Some web designs may be difficult or unintuitive for people with disabilities to use, even if the design technically passes accessibility guidelines.

The guidelines are not all-inclusive, meaning that there are some good accessibility techniques not represented by the guidelines. Reasons that some good techniques may not be in the list of guidelines include:

• It is difficult to objectively verify compliance with the technique
• The writers of the guidelines did not recognize the need for the technique when writing the guidelines.
• The technique was not necessary (or at least not anticipated) at the time the guidelines were written, because the technologies or circumstances that require the technique are newer than the guidelines.

As mentioned above, screen readers and screen magnifiers are AT that are used for testing. Individuals who are blind or have low vision use these types of AT. Even if a webpage can be accessed with AT and meets accessibility standards, it still may not be usable for end-users with disabilities. For instance, an image link has an alt attribute, but it may not be descriptive enough for blind users to determine the link purpose. Another instance could be if the webpage is overloaded with images that have alt attributes, the page still may be accessible but not very easy to follow.

Accessibility for persons with cognitive impairments means making a website or program as clear and concise as possible. This type of accessibility implies consistent page layout throughout a website, noticeable links in the same position, and short paragraphs. These techniques do not only facilitate accessibility for individuals with cognitive impairments; they also promote usability for all users. If the contents of a website cannot be followed easily, then nobody can use it. However, some of these techniques are not official guidelines, such as the length of a short paragraph or the definition of simplified language.

With technologies advancing daily, guidelines become outdated quickly. For example, when WCAG 1.0 was written, no success criteria or techniques were developed for ARIA or Silverlight, let alone mobile devices. Since then, WCAG 2.1 and Mobile Web Best Practices 1.0 have been created.
Study topics related to testing the end-user impact

- Understand the value of user testing, by users with a variety of types of disabilities.
- Think through the consequences of certain types of accessibility flaws. Some flaws are more damaging than others.
- Consider the usability of the design, not just the accessibility or conformance to the specifications.

E. Use accessibility testing tools effectively.

No accessibility software tool can find all the accessibility issues on a web site, but software tools can expedite the process of finding accessibility issues and increase the overall accuracy when supplemented by a skilled manual evaluation of the same content.

There are many tools and brands available, some of which are listed below.

Note: The list of products below is not an endorsement by the IAAP of any of the products or companies that produce these products. These are merely examples of various kinds of software for accessibility testing. For more options, refer to a list published by the W3C at https://www.w3.org/WAI/ER/tools/ (the IAAP is not responsible for the content or accuracy of that list).

Automated Testing

- Site-wide scanning and reporting
 - AMP (by Level Access/SSB Bart)
 - WAVE API (by WebAIM)
 - Tenon.io
 - WorldSpace Comply (by Deque Systems)

- Server-based page analysis
 - wave.webaim.org (by WebAIM)
 - Cynthia Says (by Cryptzone)
 - SiteImprove Accessibility (by SiteImprove)

- Browser-based developer/QA tools (one page at a time)
 - aXe browser add-on (by Deque)
 - Google accessibility developer tools
 - WAVE browser add-on (by WebAIM)
 - JavaScript bookmarklets written to test specific accessibility criteria or expose certain types of markup (by various companies and individuals)
 - AInspector for Firefox (by University of Illinois at Urbana-Champaign)
 - ANDI
 - ARC Toolkit by TPG
 - MS Accessibility Insights
 - Google Chrome Lighthouse

- Unit testing during development
 - aXe API (with integration into Selenium, etc., by Deque)
 - Tenon API
 - WorldSpace Attest (by Deque)

- Integration testing prior to deployment
Manual Testing Tools

- Guided manual testing based on heuristics
 - WorldSpace Assure (by Deque)
 - JAWS Access

- Browser developer tools and add-ons
 - The inspector feature in developer tools of browsers
 - Web Developer Toolbar (by Chris Pederick)

- Accessibility API viewers
 - Accessibility Viewer (for Windows, by Paciello Group)
 - XCode Accessibility Inspector (MacOS, by Apple)

- Simulators
 - Color Oracle (for colorblindness simulation, by Bernard Jenny)
 - No Coffee vision simulator (low vision and other conditions, by Aaron Leventhal)

- Multi-purpose accessibility tools
 - Web Accessibility Toolbar (by Paciello Group)

- Single-purpose tools
 - Headings Map (by Jorge Rumoroso)
 - PEAT – Photosensitive Epilepsy Analysis Tool (by Trace R&D Center)

Study topics related to accessibility testing tools:

- Know the strengths and limitations of automated testing tools.
- Differentiate between the kinds of accessibility issues that can be found with automated tools and issues that require manual testing.
- Understand how accessibility software tools can be used at various stages in the web development process (e.g. design/develop/test).
- Be familiar with the types of software tools available (site-wide scanning, server-based analysis, unit testing, integration testing, browser developer tools, browser add-ons, simulators, guided manual testing, etc.).
- Know how to generate and translate results into usable analysis, prioritization and categorization, and how to differentiate technical reports from business reports.
III. Remediate (fix) accessibility issues

A. Prioritize accessibility issues based on the level of severity.

When managing accessibility projects, address the most important accessibility issues first. Start with the core functions of the website. If there is a shopping cart, that would be considered a core function. Every step of the shopping experience needs to be accessible: e.g. searching for products, reading about the products, adding the products to the cart, reviewing the cart, entering account information, entering payment information, and receiving confirmation of the purchase. Non-core functions of the site can wait until the accessibility of the core functions have been addressed.

Study topics related to prioritizing accessibility issues based on the level of severity

- **Identify the Issue**: Identify the accessibility issue either in the style, markup, or functionality of the content.
- **Identify the User Impact**: Associate the issue with the impact on the affected accessibility user. Differentiate between minor issues that can be worked around via advanced accessibility methods and complete blocker issues.
- **Identify the Legal Risk and Cost Benefit**: Determine whether the issue identified is a legal risk or a potential usability improvement. Take into account factors such as visibility and frequency. Determine the cost benefit provided by the remediation, due to accessibility users’ ability (or current inability) to complete the flow in question.
- **Determine Level of Effort associated with Issue Remediation**: Differentiate between style, markup, and functionality changes.
- **Prioritize**: Use the user impact, legal risk, cost benefit, and level of effort to determine severity, identify low-hanging fruit and prioritize all issues.

B. Recommend strategies and/or techniques for fixing accessibility issues.

Recommending remediation strategies requires knowledge of how to create accessible content (competency I), the ability to identify accessibility issues (competency II), and the wisdom to choose an appropriate remediation technique for the circumstances, taking into account all the practical limitations of real-world situations.

The task of making a website accessible can be simple or complex, depending on many factors such as the type of content, the size and complexity of the site, and the development tools and environment. Recommending the best strategies and techniques that reflect particular conditions (time, money, the current state of the development, chosen CMS, etc.) can help both users and developers in finding the most efficient way to make the website accessible.

Study topics related to recommending strategies and/or techniques for fixing accessibility issues

- Characterize and differentiate between the ideal/best solution and the “good enough” solution, respecting the particular project, its environment, intended target groups, and resources.
- Demonstrate the understanding between the fixing of the particular issue and the complete redesign of the web page.
- Demonstrate the ability to distinguish the feasibility of the particular solution in different contexts.
- Demonstrate the knowledge of practical and simple hints, leading to better web accessibility.
• Communicate the purpose, approach and strategy to remediate.
• Ensure that the right stakeholders are aware, educated, and included in implementation recommendations.
• Consider the use of maturity models and tools to illustrate progress and sustainability.

The IAAP Web Accessibility Specialist (WAS) Body of Knowledge (BOK) is provided as general information regarding the current state and future of web accessibility best practices. This document hopes to identify intermediate levels of knowledge for those working in web accessibility as one portion of the larger accessibility profession.

The IAAP Certification Team can be reached by email at certification@accessibilityassociation.org.